论文研究 Vague模式排序法进行目标价值排序.pdf
提出从Fuzzy数据向Vague数据的两个转化公式,提出Vague集之间的相似度量公式。数据转化公式和相似度量公式是Vague模式排序法的两个基础。该方法能进行目标价值排序,也能为如何选择更重要攻击目标提供理论依据。应用实例表明Vague模式排序法是实用的。杨洁,王鸿绪: Vague模式排序法进行日标价值排序2012,48(2)它们都是指标(属性)集合W={v,2,…,w1b上的集合G4={[0.50,0.71,[0.60,0.7,[0.60,0.7].[0.80,0.89,具体数据由专家给出,如表2所示(即文献[1的属性矩阵)。0.80,0.891,[0.10,0.321,[0.20,0.45],[0.20,0.451,[0.30,0.55表2各模式的原始属性表[0.10,0.32]};G5={0.80,0.89],[0.70,0.84],[0.80,0.89],[0.90,0.95],v1040.304050.80.90.9090.9[0.90,0.95],[0.20,0.45],[0.40,063],[0.10,0.32],[0.10,0.32],060.50.5060.70.90.90.90.9[0.10,0.32]};0.60.50.50.60.80.90.90.908080.7080.90.9090.9G6={[0.90,0.95],[0.90,0.95],0.90,0.95],[0.90,0.95],5090.80.808091.0101.00.1[1.00,1.00],[0.10,0.32],[0.10,0.32],[0.10,0.32],[0.30,0.550.10.10.10.0.1040.1O.10,0.321};0.20.20.10.20.40.10.10.60.10.30.30.20.20.10.10.10.10.7={[00,0.95],[0.90,0.95],[0.90,0.95],[0.90,095040.40.30.30.10.30.10.10.11.00,1.00J.[0.10,0.32」,10.10,0.32],0.10,0.32],0.10,0.32」,0.10.0.10.10.1[0.10,0.32]}63提取标准模式G8=10.90.0.95」.10.90,0.951,10.90,0.95].0.90,0.95文献[还指出:指标w1、m2、w3和v4,这些指标数值越1.0,1.00,0.40,0.631,0.60,0.77T0.10,0.321,[0.10,0.321,大,越需要优先打击。而对于指标w6、w1、w、w、vo,这0.10,0.32]}些指标数值越小,越需要优先打击。特别对于指标ws,它近Q={0.90,0.951,[0.90,0.951,[0.90,0.951,[0.90,0.95似于0.1。因此得到标准模式为Q,具休数值也刎入表2。[0.10,0.32],[0.10,0.32],[0.10,0.32],[0.10,0.32],[0.10,0.32],6.4 Vague环境的营造[0.10,0.32]}。化成表3。表3给出各待识别模式G1、G2、G3、G1,G,6.5 Vague模式分析由于表2中的数据皆是 Fuzzy数据,应用公式(7),把表应用公式(5),取m=2,计算 Vague集G(i=1,2,…,8)和QG和G3以及标准模式Q的 Vague集表示如下之间的相似度量。计算结果如下:S2(G1Q)=0.638,S2(G2,Q)=G1={[040,0.63],[0.60,0.7].0.60,0.7],0.80,0.89],0.609,52G3Q)=0.699,S2(4)=0686,S2(Gs9)=0778,0.90,0.95],[0.100,32],[020,0.45],[0.30,0.55,0.40,0.63],S2(G6g)=0.864,S2(G7,9)=0907,S2(GQ)=0.718410.0,0.32};故由Ⅴage集之间的相似度量的含意知G2={[0.30,0.55,[0.50,0.71],[0.50,0.71],[0.80,0.89],G77G67G17G87G37G47G7G710.80,0.89,10.10.0.32」,10.20,045,10.30,0.55,040,063】,其中符号“x”表示“优先打击”。[0.10,0.32]};此结果与文献[的首要打击对象相同,都是防空导弹阵G3={[0.40,0.63],[050,0.71,[0.50,0.71,[0.70,0.84],地目标。[0.80,0.8],[0.10.0.32],[0.10,0.32],[0.20,0.45],[0.30,0.55][0.10,0.32]};7结束语表3各模式的vagu属性表Vague模式排序方法比模糊综合评判方法简捷,对于研究战场目标打击价值的排序问题是适合的,是一个潜在的有广mD40.065030.051[040.061D050.01080.08泛应用的方法。该方法依赖于两类公式:(1)把原始数据转化12[0.60,0.77]0.50,0.71][0.50,0.71][0.60,0.77][070,0.84]mD00,07050071050.071[060.0708,091成 Vague数据;(2) Vague集之间的相似度量公式。因此,对这v,[0.80,0.89]080,0.89]0.70,0.841][0.80,089][090,095]两类公式的研究也很重要w[0.90,0.95]080,0.89[0.80,0.89]0.80,0.89]0.90,0.95[0.10,0.32]0.10,0.32][0.10,0.32][0.10,0.32][0.20,0.45]参考文献:w7[0.20,0.45]0,0.32][0.20,0.45]mD03.553030.055020.0451020.0451010032[]刘玉文,刘怡昕,马建华等模糊宗合评判进行战场目标排序研究[0.40,0.63]0.40,0.6][0.30,0.55[0.30,0.55]0.10,0.32]弹箭与制导学报[o10,0.32] [0.10,0.32] [0.10, 0.32] [0. 10, 0.32] [0. 10,0.32] [2 Gau Wen-Lung, Buchrer D J Vague sets[JJ. IEEE Transactions onSystems, Man and Cyber1993,23(2):610-6141D0.90,0.95]0.90,0.95]0.90,0.95][0.90,0.95][3]王鸿绪 Vague集之间的相似度量公式及其应用计算机工程与w2[0.90,0.95090,0.95]0.90,0.95]0.90,0.95]应用,2010,46(26):198-1990.90,0.950.90,0.95][0.90,0.95][0.90,0.95][4] Chen S M.Similarity measures between vague sets and between[0.90,0.95]090,0.95[0.90,0.95][0.90s[1.00,1.。00][1.00,1.00][1.00,1.00][0.10,0.32]elements[IEEE Transactions on Systems, Man, and Cybernetics16[0.10,0.32]0.10,0.32][0.40,0.63][0.10,0.32]1997,27(1):153-158w[0.10,0.32]0.10,0.32][0.60,0.77][0.10,0.32[5] Hong D H, Kim C AA note similarity measures between vaguevs[0.10,0.32]0.10,0.32][0.10,0.32][0.10,0.32]sets and between elements[J] Information Sciences, 1999,115[0.30,0.550.10,0.32][0.10,0.32][0.10,0.32][0.10,0.32]0.10,0.32][0.10,0.32][0.10,0.32](下转42页)
用户评论