1. 首页
  2. 数据库
  3. 其它
  4. 64位以内Rabin Miller强伪素数测试 和Pollard 因数分解算法的实现

64位以内Rabin Miller强伪素数测试 和Pollard 因数分解算法的实现

上传者: 2020-10-28 04:43:10上传 DOC文件 164.5KB 热度 23次
在求解POJ1811题Prime Test中应用到的两个重要算法是Rabin-Miller强伪素数测试和Pollard 因数分解算法。前者可以在 的时间内以很高的成功概率判断一个整数是否是素数。后者可以在最优 的时间内完成合数的因数分解。这两种算法相对于试除法都显得比较复杂。本文试图对这两者进行简单的阐述,说明它们在32位计算机上限制在64位以内的条件下的实现中的细节。下文提到的所有字母均表示整数。
下载地址
用户评论