一类新节点集上的Newman有理插值逼近
为了得到在[-1,1]上对非光滑函数|x|逼近误差的上界,构造了一组全新的节点集,并证明了基于该节点集的Newman型有理插值算子逼近函数|x|的误差上界为e-2/1+εn其中ε为仅依赖n的小正数,可随着n增大任意减小乃至趋于零。该误差上界优于利用Newman节点集所得到的结果。同时通过合理分配节点集在区间上的分布及改进不等式的证明方法,逼近的误差阶可进一步提高。
下载地址
用户评论