Function Analysis 泛函分析 Walter Rudin 英文清晰版
ABOUTTHEAUTHOR
InadditiontoFunctionalanalysis,secondedition,Walterrudinisthe
authoroftwootherbooks:Principlesofmathematicalanalysisandreal
andComplexanalysis,whosewidespreaduseisillustratedbythefactthat
theyhavebeentranslatedintoatotalof13languages.HewrotePrinciples
ofmathematicalAnalysiswhilehewasaC.L.E.MooreInstructoratthe
MassachusettsInstituteofTechnology-justtwoyearsafterreceivinghis
Ph.D.atDukeUniversity.Later,hetaughtattheUniversityofrochester,
andisnowavilasResearchProfessorattheUniversityofWisconsin-
Madison.Inthepast,hehasspentleavesatYaleUniversitytheUniversity
ofCaliforniainLaJolla,andtheUniversityofHawaii
Dr.Rudin'sresearchhasdealtmainlywithharmonicanalysisand
withcomplexvariables.Hehaswrittenthreeresearchmonographsonthese
topics:FourierAnalysisonGroups,FunctionTheoryinPolydiscs,and
FunctionTheoryintheunitBallofcn
CONTENTS
Preface
XIll
PartIGeneralTheory
1TopologicalVectorSpaces
Introduction
Separationproperties
10
Linearmappings
14
Finite-dimensionalspaces
Metrization
Boundednessandcontinuity
23
Seminormsandlocalconvexity
25
Quotientspaces
30
E
Xam
33
Exercises
38
2Completeness
42
Bairecategory
TheBanach-Steinhaustheorem
43
Theopenmappingtheorem
47
Theclosedgraphtheorem
50
Bilinearmappings
52
Exercises
53
3Convexity
56
TheHahn-Banachtheorems
Weaktopologies
62
Compactconvexsets
68
Vector-valuedintegration
77
Holomorphicfunctions
82
Exercises
85
IX
XCONTENTS
4DualityinBanachSpaces
92
Thenormeddualofanormedspace
92
Adjoints
97
Compactoperators
103
E
mercies
111
5SomeApplications
116
Acontinuitytheorem
116
ClosedsubspacesofL'-spaces
117
Therangeofavector-valuedmeasure
120
AgeneralizedStone-Weierstrasstheorem
121
Twointerpolationtheorems
124
Kakutani'sfixedpointtheorem
126
Haarmeasureoncompactgroups
128
Uncomplementedsubspaces
132
SumsofPoissonkernels
138
Twomorefixedpointtheorems
139
Exercises
Partiidistributionsandfouriertransforms
6TestFunctionsandDistributions
49
Introduction
Testfunctionspaces
151
Calculuswithdistributions
157
calization
162
Supportsofdistribution
164
Distributionsasderivatives
167
Convolutions
170
Exercises
177
7FourierTransforms
182
Basicproperties
182
Tempereddistributions
189
Paley-Wienertheorems
196
Sobolev'slemma
202
Exercises
204
8ApplicationstoDifferentialEquations
Fundamentalsolutions
210
Ellipticequations
215
Exercises
222
CoNTENTS
9TauberianTheory
226
Wiener'stheorem
226
Theprimenumbertheorem
230
Therenewalequation
236
Exercises
239
PartIiiBanachAlgebrasandspectralTheory
10BanachAlgebras
45
Introduction
245
Complexhomomorphisms
249
Basicpropertiesofspectra
252
Symboliccalculus
258
Thegroupofinvertibleelements
267
Lomonosov'sinvariantsubspacetheorem
Exercises
271
11CommutativeBanachalgebras
275
Idealsandhomomorphisms
275
Gelfandtransforms
Involutions
287
applicationstononcommutativealgebras
292
Positivefunctionals
296
Exercis
301
12BoundedOperatorsonahilbertspace
306
Basicfacts
306
Boundedoperators
309
Acommutativitytheorem
315
Resolutionsoftheidentity
316
Thespectraltheorem
321
Eigenvaluesofnormaloperators
327
Positiveoperatorsandsquareroots
330
Thegroupofinvertibleoperators
333
AcharacterizationofB*-algebras
336
Anergodictheorem
339
Exercises
341
13UnboundedOperators
347
Introduction
347
Graphsandsymmetricoperators
351
TheCayleytransform
356
Resolutionsoftheidentity
360
Thespectraltheorem
368
Semigroupsofoperators
375
Exercises
385
XICONTENTS
AppendixACompactnessandContinuity
391
AppendixbnotesandComments
397
Bibliography
412
ListofSpecialSymbols
414
Index
417
PREFACE
Functionalanalysisisthestudyofcertaintopological-algebraicstructures
andofthemethodsbywhichknowledgeofthesestructurescanbeapplied
toanalyticproblems
agoodintroductorytextonthissubjectshouldincludeapresentation
ofitsaxiomatics(i.e.,ofthegeneraltheoryoftopologicalvectorspaces),it
shouldtreatatleastafewtopicsinsomedepth,anditshouldcontainsome
interestingapplicationstootherbranchesofmathematics.ihopethatthe
presentbookmeetsthesecriteria
Thesubjectishugeandisgrowingrapidly.Thebibliographyin
volumeIof[4]contains96pagesandgoesonlyto1957.Inordertowrite
abookofmoderatesizeitwasthereforenecessarytoselectcertainareas
andtoignoreothers.Ifullyrealizethatalmostanyexpertwholooksatthe
tableofcontentswillfindthatsomeofhisorher(andmy)favoritetopics
aremissing,butthisseemsunavoidable.Itwasnotmyintentiontowritean
encyclopedictreatise.Iwantedtowriteabookthatwouldopenthewayto
furtherexploration
Thisisthereasonforomittingmanyofthemoreesoterictopicsthat
mighthavebeenincludedinthepresentationofthegeneraltheoryoftopo
logicalvectorspaces.Forinstance,thereisnodiscussionofuniformspaces
ofMoore-Smithconvergence,ofnets,oroffilters.Thenotionofcomplete
nessoccursonlyinthecontextofmetricspaces.Bornologicalspacesare
notmentioned,norarebarreledones.Dualityisofcoursepresented,but
notinitsutmostgenerality.Integrationofvector-valuedfunctionsistreated
strictlyasatool;attentionisconfinedtocontinuousintegrandswithvalues
InaFrechetspace
Nevertheless,thematerialofPartiisfullyadequateforalmostall
applicationstoconcreteproblems.Andthisiswhatoughttobestressedin
suchacourse:Thecloseinterplaybetweentheabstractandtheconcreteis
XIVPREFACE
notonlythemostusefulaspectofthewholesubjectbutalsothemost
fascinatingone
Herearesomefurtherfeaturesoftheselectedmaterial.afairlylarge
partofthegeneraltheoryispresentedwithouttheassumptionoflocalcon-
vexity.Thebasicpropertiesofcompactoperatorsarederivedfromthe
dualitytheoryinBanachspaces.TheKrein-Milmantheoremontheexis-
tenceofextremepointsisusedinseveralwaysinChapter5.Thetheoryof
distributionsandFouriertransformsisworkedoutinfairdetailandis
applied(intwoverybriefchapters)totwoproblemsinpartialdifferential
equationsaswellastoWienerstauberiantheoremandtwoofitsapplica
tions.ThespectraltheoremisderivedfromthetheoryofBanachalgebras
(specifically,fromtheGelfand-Naimarkcharacterizationofcommutative
BW-algebras);thisisperhapsnottheshortestway,butitisaneasyone.The
symboliccalculusinBanachalgebrasisdiscussedinconsiderabledetail:so
areinvolutionsandpositivefunctionals
IassumefamiliaritywiththetheoryofmeasureandLebesgueintegra
tion(includingsuchfactsasthecompletenessoftheIP-spaces),withsome
basicpropertiesofholomorphicfunctions(suchasthegeneralformof
Cauchystheorem,andRungestheorem),andwiththeelementarytopo-
logicalbackgroundthatgoeswiththesetwoanalytictopics.Someother
topologicalfactsarebrieflypresentedinAppendixA.almostnoalgebraic
backgroundisneeded,beyondtheknowledgeofwhatahomomorphismis
HistoricalreferencesaregatheredinAppendixB.Someoftheserefer
totheoriginalsources,andsometomorerecentbooks,papers,orexposi
toryarticlesinwhichfurtherreferencescanbefoundThereare,ofcourse
manyitemsthatarenotdocumentedatall.innocasedoestheabsenceofa
specificreferenceimplyanyclaimtooriginalityonmypart
MostoftheapplicationsareinChapters5,8,and9.Somearein
Chapter11andinthemorethan250exercises;manyofthesearesupplied
withhints.Theinterdependenceofthechaptersisindicatedinthediagram
onthefollowingpage
MostoftheapplicationscontainedinChapter5canbetakenupwell
beforethefirstfourchaptersarecompletedIthasthereforebeensuggested
thatitmightbegoodpedagogytoinsertthemintothetextearlier,assoon
astherequiredtheoreticalbackgroundisestablished.However,inorder
nottointerruptthepresentationofthetheoryinthisway,Ihaveinstead
startedChapter5withashortindicationofthebackgroundthatisneeded
foreachitem.Thisshouldmakeiteasytostudytheapplicationsasearlyas
possible,ifsodesired
Inthefirstedition,afairlylargepartofChapter10dealtwithdiffer
entiationinBanachalgebras.Twentyyearsagothis(thenrecent)material
lookedinterestingandpromising,butitdoesnotseemtohaveledany-
where,andIhavedeletedit.Ontheotherhand.Ihaveaddedafewitems
whichwereeasytofitintotheexistingtext:themeanergodictheoremof
用户评论