信号与系统奥本海默答案
Chapter 1 Answers 1.1 Converting from polar to Cartesian coord 2 cos( ) sin( ) 2 2 j e j j 2 c o s ( ) s i n ( ) 2 2 j e j j 5 2 2 j j e e j 4 2 ( c o s ( ) s i n ( ) ) 1 2 4 4 j e j j 9 2 2 4 4 1 j j e e j 9 2 2 4 4 1 j j e e j 2 4 1 j e j 1.2 converting from Cartesian to polar coordinates: 0 5 5 e j , 2 2e j , 3 3 j e j2 2 1 3 2 2 j j e , 1 2 j e j4 , 1 j2 2e j2 j j (1 ) e 4 , 1 4 1 j j e 12 2 2 1 3 j j e 1.3. (a) E = 4 0 1 4 t e dt , P =0, because E (b) (2 ) 4 x e 2( ) t j t , x2( ) 1 t .Therefore, E = x2( ) t 2dt = dt = , P = lim lim 1 1 2 2 T T 2 2 T T T T T T x ( ) t dt dt Tlim1 1 (c) x 2( ) t =cos(t). Theref 2 2 1 3 j j e 1.3. (a) E = 4 0 1 4 t e dt , P =0, because E (b) (2 ) 4 x e 2( ) t j t , x2( ) 1 t .Therefore, E = x2( ) t 2dt = dt = , P = lim lim 1 1 2 2 T T 2 2 T T T T T T x ( ) t dt dt Tlim1 1 (c) x 2( ) t =cos(t). Theref
用户评论