op amps for everyone 4 edition
经典运放书籍 op amps for everyone 第四版Newnes is an imprint of elsevierThe Boulevard, Langford Lane, Kidlington, Oxford, OX5 IGB, UK225 Wyman Street, Waltham, MA 02451, USASecond edition 2003Third edition 2009Fourth edition 2013Copyright 2013 Elsevier Inc. All rights reservedNo part of this publication may be reproduced or transmitted in any form or by any means, electronic ormechanical, including photocopying, recording, or any information storage and retrieval system, withoutpermission in writing from the publisher. Details on how to seek permission, further information about thePublisher's permissions policies and our arrangement with organizations such as the Copyright Clearance CenterandtheCopyrightLicensingAgencycanbefoundatourwebsitewww.elsevier.com/permissionsThis book and the individual contributions contained in it are protected under copyright by the publisher(other than as may be noted herein)NoticesKnowledge and best practice in this field are constantly changing. As new research and experience broaden ourunderstanding, changes in research methods, professional practices, or medical treatment may become necessaryPractitioners and researchers must always rely on their own experience and knowledge in evaluating and usingany information, methods, compounds, or experiments described herein. In using such information or methodsthey should be mindful of their own safety and the safety of others, including parties for whom they have aprofessional responsibilityTo the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liabilityfor any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, orfrom any use or operation of any methods, products, instructions, or ideas contained in the material hereinBritish Library Cataloguing-in-Publication DatA catalogue record for this book is available from the british libraryLibrary of Congress Cataloging-in-Publication DataA catalog record for this book is available from the Library of CongressISBN:978-0-12-391495-8For information on all Newnes publicationsvisitourwebsiteatwww.newnespress.comPrinted and bound in the United States1314151610987654321Working together to growlibraries in developing countrieswww.elsevier.comwww.bookaid.orgwww.sabre.orgELSEVIERBOOK AIDInternationalSabre FoundationList of FiguresFigure2.lOhm’sLawFigure 2.2 Voltage Divider RuleFigure 2.3 Superposition ExampleFigure 2.4 When Vi is groundedFigure 2.5 When v2 is Grounded10Figure 2.6 The Non-Inverting Op AmpFigure 2. 7 The Inverting Op Amp12Figure 2.8 The Adder circuit13Figure 2.9 The Differential Amplifier14Figure 2. 10 Typical Open-Loop Op Amp response15Figure 3. 1 Split-Supply Op Amp circuit20Figure 3.2 Single-Supply Inverting Op Amp CircuitFigure 3.3 Single-Supply Non-Inverting Op Amp Gain CircuitFigure 3.4 Cartesian Coordinates23Figure 3.5 Schematic for Case 1: VOuT=+mvIN+b25Figure 3.6 Case 1 Example circuitFigure 3.7 Schematic for Case 2: VouT =+mvin-b29Figure 3.8 Case 2 Example Circuit31Figure 3.9 Schematic for Case 3: VOUT =+VIN+ b31Figure 3. 10 Case 3 Example circui32Figure 3. 11 Schematic for Case 4 VouT =-mvin-b33Figure 3. 12 Case 4 Example Circuit35Figure 3. 13 Case 9 Circuit36xii List of FiguresFigure 3. 14 Case 10 Circuit36Figure 3. 15 Case 13 (nverting Attenuator) Circuit37figure 3. 16 Case 11 Circuit37Figure 3. 17 Case 12 Circuit37Figure 3. 18 Case 8 Circuit38Figure 3.19 Case 7 circuitFigure 3.20 Universal Op Amp Circuit39Figure 3.21 Universal Op Amp Calculator40Figure 3.22 Universal Op Amp board41Figure 4. 1 The Ideal Op amp44Figure 4.2 Op Amp Open-Loop Response45Figure 4.3 Undercompensated Op amp45Figure 4.4 Electronics Version of the Feedback Diagram and equationsFigure 4.5 The Feedback Loop Analysis Figure Modified to Show aNon-Inverting Op Amp stage47Figure 4.6 The Feedback Loop Analysis Figure Modified to Show anInverting Op Amp Stage47Figure 4.7 Current Feedback Amplifier Model48Figure 4.8 Single Ended Op amp Schematic Symbol50Figure 4.9 Fully Differential Op Amp Schematic Symbol50Figure 4.10 Closing the Loop on a single-Ended Op amp51Figure 4 1 1 Closing the Loop on a Fully differential Op amp51Figure 4.12 Single-Ended to Differential Conversion52Figure 4.13 Relationship between VIN, VOUT+, and vou54Figure 4. 14 Using a Fully Differential Op Amp to Drive an Analog-to-DigitalConverterFigure 4.15 Instrumentation Amplifier55List of Figures xiiFigure 4.16 High-Precision Differential Amplifier56Figure 4. 17 Difference amplifier56Figure 4.18 High Side current monitor57Figure 4.19 Commercial Difference Amplifier58Figure 4.20 A Better Way to Use a buffer amplifierFigure 4.21 Paralleling Buffer AmplifiersFigure 5. 1 Focusing on the Power Supply Characteristics66Figure 5.2 Focusing on the Input Signal67Figure 5.3 Focusing on the Analog-to-Digital Converter68Figure 5.4 Focusing on the Operational AmplifiersFigure 5.5 Single-Ended to Fully Differential AC Coupled Interface70Figure 5.6 Single-Ended to Fully Differential AC Coupled InterfaceFigure 6. 1 Unity-Gain Sallen-Key Low-Pass Filter74Figure 6.2 Second Order Unity-Gain Tschebyscheff Low-Pass with 3 dB Ripple 76Figure 6.3 Low-Pass Response - Go to Section 6.3.278Figure 6. 4 High-Pass Response Go to Section 6.3.378Figure 6.5 Narrow(Single-Frequency) Band Pass-Go to Section 6.3.47Figure 6.6 wide band pass Go to Section 6.3.679Figure 6. 7 Single-Frequency Notch Filter79Figure 6.8 Low-Pass Filter80Figure 6.9 High-Pass Filter81Figure 6.10 Narrow Bandpass Filter82Figure 6 11 Wide bandpass filter83Figure 6. 12 Notch Filter85Figure 6.13 Variable-Frequency Notch Filter85Figure 6. 14 Open-loop Response86xiv List of FiguresFigure 6. 15 Bandpass response87Figure 6. 16 Notch Filteter response89Figure 6.17 Three-Pole Low-Pass Filter0Figure 6.18 Three-Pole High-Pass Filter91Figure 6. 19 Twin-T Bandpass Filter ResponseFigure 6.20 Modified Twin-T Topology92Figure 6.21 Two Twin-T Networks Inside the Feedback Loop93Figure 6.22 Stagger-Tuned Filter Response94Figure 6.23 Multiple-Peak Bandpass Filter94Figure 6.24 Single-Amplifier Twin-T Notch FilterFigure 6.25 Twin-T Band reject Filter96Figure 6.26 Single-Amplifier Twin-T Notch and Bandpass filter97Figure 6.27 Universal Filter Schematic98Figure 6.28 Universal Filter CalculatorFigure 6.29 Universal Filter BoardFigure 6.30 Notch Filter CalculatorFigure 6.31 Notch Filter PCB102Figure 6.32 Twin-T Filter Calculator103Figure 6.33 Twin-T PCB103Figure 7. 1 A Traditional Radiofrequency Stage106Figure 7.2 Non-Inverting Radiofrequency Op Amp Gain Stage107Figure 7.3 Frequency Response Peaking110Figure 7.4 Noise bandwidth12Figure 7.5 Typical Global System for Mobile Communications(GSM)Cellular base station Receiver block diagramFigure 7.6 Broadband Radio frequency Intermediate-Frequency Amplifier114Figure 7.7 Wideband response114List of Figures XvFigure 7.8 Intermediate-Frequency Amplifier Response117Figure 7.9 Single-Ended to Differential Output Drive Circuit118Figure 8.1 Rail-to-Rail Output (RRO) Stage120Figure 8.2 Input Circuit of a Non-Rail-to-Rail Input Op amp122Figure 8.3 Input Circuit of a Rail-to-Rail Input Op Amp123Figure 8.4 Input Offset Voltage and Bias Current Changes with InputCommon-Mode voltage123Figure 10.1 Voltage Regulator operation141Figure 10.2 Switching Regulator144Figure 10.3 Overvoltage Protection Circuit145Figure 10. 4 Active Load146Figure 10.5 Voltage Regulator Calculator148Figure 11.1 Digital Control System152Figure 11.2 DAC Current Sink to Actuator Interface Circuit152Figure 11. 3 Oscillator Schematics154Figure 11.4 Oscillator Outputs154Figure 11. 5 Comparator Oscillator Analysis155Figure 11.6 Composite Op amp156Figure 11.7 Composite High-Frequency Op amp157Figure 11.8 Composite High-Speed Op amp with Power Boostin158Figure 11. 9 High-Speed Bridged Hybrid Amplifier159Figure 12. 1 Tina-TI Simulation163Figure 12.2 Filter Pro Opening Screen165Figure 12.3 Filter Pro Step 2166Figure 12.4 Filter Pro Step 3167Figure 12.5 Filter Pro Step 4168Figure 12.6 Filter Pro Final design168xvi List of FiguresFigure 12.7 Webench Opening Screen169Figure 12.8 Webench Filter Design Section169Figure 12.9 Webench Filter Parameter Entry170Figure 12.10 Webench Final design171Figure 12.11 OpAmp Error Budget Top Box173Figure 12 12 Opamp error budget parameter Entry and results174Figure 12 13 LT Spice Filter Design175Figure 12 14 LT Spice simulation Results176Figure 13. 1 Op Amp attenuator Done Wrong180Figure 13.2 Op Amp attenuator Done Correctly180Figure 13.3 Similar Schematic Symbols, Very Different Parts181Figure 13.4 Example Op amp schematic181Figure 13. 5 Example comparator schematic182Figure 13.6 Different Ways of Dealing with Unused Op Amp Sections184Figure 13.7 Unexpected DC Gain186Figure 13. 8 Incorrect and Correct Application of Current Feedback Amplifiers 187Figure 13.9 Voltage Feedback vs Current Feedback AmplifierStability vs. Load Resistor187Figure 13 10 Capacitor in Feedback Loop of Current Feedback Amplifier188Figure 13.11 Incorrect DC Operating Point189Figure 13 12 Correct DC Operating Point189Figure 1313 Common-Mode error190Figure 13 14 Effects of VocM on OutputsFigure 13 15 Terminating a Fully Differential Amplifier192Figure 13 16 Using an Input stage with a Fully differential amplifier192Figure A 1 Gain and Phase margin199Figure A2 Open-Loop Parameters199List of Figures xvilFigure A3 Input Parasitic Elements202Figure A 4 Slew rateFigure A. 5 offset Voltage adjust218Figure B. 1 Gaussian Distribution of Noise Energy227Figure B 2 Noise Colors229Figure B3 Typical Op Amp Noise Characteristics231Figure C 1 Digital and Analog Plane Placement241Figure C2 Broadcasting from PCB Traces243Figure C. 3 A Careful Board Layout243Figure C 4 Resistor High-Frequency Model244Figure C5 Capacitor High-Frequency Model245Figure C 6 Inductor High-Frequency model246Figure C 7 Loop and slot Antenna Board Trace Layouts249Figure c8 PCB Trace corners249Figure C9 PCB Trace-to-Plane Capacitance Formula250Figure C10 Coupling Between Parallel Signal Traces51Figure cll Via Inductance Measurements251Figure C 12 Typical Logic Gate Output Structure253Figure C 13 Capacitor Self-Resonance254Figure C 14 PCB Shield256Figure C 15 Common Op Amp Pinouts257Figure C 16 Mirror-Image Layout for Quad Op Amp Package257Figure C 17 Quad Op amp Package Layout with Half-Supply Generator258Figure D 1 Simulated Inductor262Figure D 2 Graphic equalizer262Figure D 3 Constant Current Generator263
下载地址
用户评论
第一次下载没成功,再来一次。
名实相符,不错!
确实是第四版,好快。多谢分享了!
运算放大器的好资料